Navigating the Labyrinth: Understanding Dementia’s Effect on the Brain and the Role of Educational Therapy-Based Interventions in Dementia Treatment

Authors

DOI:

https://doi.org/10.64663/aet.30

Keywords:

Acetylcholine, Brain-derived neurotrophic factor, Cortical lobes, Dementia, Educational therapy, Hippocampus

Abstract

Dementia presents a profound challenge to cognitive function, impacting various regions of the brain, including the frontal, parietal, temporal, and occipital lobes, as well as the hippocampus. This article explores the specific effects of dementia on these brain regions, the interplay of acetylcholine (ACh) and brain-derived neurotrophic factor (BDNF), and the implications for cognitive decline and memory loss. Current research suggests that dementia-related changes in the brain involve cortical thinning, neuronal loss, and alterations in synaptic connectivity, leading to impairments in memory, executive function, spatial awareness, and visual processing. Of particular significance is the role of the hippocampus in memory formation and retrieval, which is often one of the earliest brain regions affected by dementia pathology. In addition, educational therapy is also mentioned as a promising approach to dementia treatment by providing tailored interventions to address cognitive deficits and enhance remaining cognitive abilities. By incorporating strategies such as cognitive stimulation, memory training, problem-solving exercises, and multisensory learning techniques, educational therapy aims to optimize brain function and improve overall quality of life for individuals living with dementia. Moreover, educational therapy interventions can be adapted to suit the specific needs and preferences of each individual, promoting personalized care and maximizing therapeutic benefits.

References

Allen, S. J, Watson, J. J., Shoemark, D. K., Barua, N. U., & Patel, N. K. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & Therapeutics, 138(2), 155-175. DOI: https://doi.org/10.1016/j.pharmthera.2013.01.004

Alzheimer’s Association (2024). What is Alzheimer’s disease? Alzheimer’s Association E-News. Retrieved from: https://www.alz.org/alzheimers-dementia/what-is-alzheimers.

Antonioni, A., Raho, E. M., Lopriore, P., Pace, A. P., Latino, R. R., Assogna, M., ... & Koch, G. (2023). Frontotemporal dementia, where do we stand? A narrative review. International Journal of Molecular Sciences, 24(14). Article ID: 11732. DOI: https://doi.org/10.3390/ijms241411732

Arendt, T. (2009). Synaptic degeneration in Alzheimer’s disease. Acta Neuropathologica, 118, 167-179. DOI: https://doi.org/10.1007/s00401-009-0536-x

Armstrong, R., & Kergoat, H. (2015). Oculo‐visual changes and clinical considerations affecting older patients with dementia. Ophthalmic and Physiological Optics, 35(4), 352-376. DOI: https://doi.org/10.1111/opo.12220

Bettio, L. E., Rajendran, L., & Gil-Mohapel, J. (2017). The effects of aging in the hippocampus and cognitive decline. Neuroscience & Biobehavioral Reviews, 79, 66-86. DOI: https://doi.org/10.1016/j.neubiorev.2017.04.030

Bi, Y., Wei, T., Wu, C., Han, Z., Jiang, T., & Caramazza, A. (2011). The role of the left anterior temporal lobe in language processing revisited: evidence from an individual with ATL resection. Cortex, 47(5), 575-587. DOI: https://doi.org/10.1016/j.cortex.2009.12.002

Bolla, L. R., Filley, C. M., & Palmer, R. M. (2000). Dementia DDx. Office diagnosis of the four major types of dementia. Geriatrics, 55(1), 34-7.

Bozeat, S., Gregory, C. A., Ralph, M. A. L., & Hodges, J. R. (2000). Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer’s disease? Journal of Neurology, Neurosurgery & Psychiatry, 69(2), 178-186. DOI: https://doi.org/10.1136/jnnp.69.2.178

Brand, M., & Markowitsch, H. J. (2008). Brain Structures Inoalved in Dementia. In G, Stoppe (Ed.), Competence assessment in dementia (pp. 25-34). Vienna, Austria: Springer. DOI: https://doi.org/10.1007/978-3-211-72369-2_3

Brockway, J. P., Follmer, R. L., Preuss, L. A., Prioleau, C. E., Burrows, G. S., Solsrud, K. A., ... & Howard, J. (1998). Memory, simple and complex language, and the temporal lobe. Brain and Language, 61(1), 1-29. DOI: https://doi.org/10.1006/brln.1997.1844

Broe, M., Hodges, J. R., Schofield, E., Shepherd, C. E., Kril, J. J., & Halliday, G. M. (2003). Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology, 60(6), 1005-1011. DOI: https://doi.org/10.1212/01.WNL.0000052685.09194.39

Carr, P. (2017). Types of dementia: an introduction. British Journal of Healthcare Assistants, 11(3), 132-135. DOI: https://doi.org/10.12968/bjha.2017.11.3.132

Casillo, S. M., Luy, D. D., & Goldschmidt, E. (2020). A history of the lobes of the brain. World Neurosurgery, 134, 353-360. DOI: https://doi.org/10.1016/j.wneu.2019.10.155

Chan, D., Fox, N. C., Scahill, R. I., Crum, W. R., Whitwell, J. L., Leschziner, G., ... & Rossor, M. N. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Annals of Neurology, 49(4), 433-442. DOI: https://doi.org/10.1002/ana.92

Chayer, C., & Freedman, M. (2001). Frontal lobe functions. Current Neurology and Neuroscience Reports, 1(6), 547-552. DOI: https://doi.org/10.1007/s11910-001-0060-4

Chiu, E. (2005). Limitations in the current classification systems for dementia. International Psychogeriatrics, 17(s1), S17-S26. DOI: https://doi.org/10.1017/S1041610205001924

Chiu, M. J., Chen, T. F., Yip, P. K., Hua, M. S., & Tang, L. Y. (2006). Behavioral and psychologic symptoms in different types of dementia. Journal of the Formosan Medical Association, 105(7), 556-562. DOI: https://doi.org/10.1016/S0929-6646(09)60150-9

Chow, T. W. (2000). Personality in frontal lobe disorders. Current Psychiatry Reports, 2(5), 446-451. DOI: https://doi.org/10.1007/s11920-000-0031-5

Chua, A. C. K., & Chia, K. H. (2023, Spring). A brief review of educational therapy & its current role: Part 1. Unlimited Human! 4-5.

Davous, P., Panisset, M., De Agostini, M., & Boiler, F. (1996). Visuo‐spatial dysgnosia and Balint’s syndrome as major symptoms of probable Alzheimer’s disease. European Journal of Neurology, 3(6), 519-527. DOI: https://doi.org/10.1111/j.1468-1331.1996.tb00267.x

Du, A. T., Schuff, N., Laakso, M. P., Zhu, X. P., Jagust, W. J., Yaffe, K., ... & Weiner, M. W. (2002). Effects of subcortical ischemic vascular dementia and AD on entorhinal cortex and hippocampus. Neurology, 58(11), 1635-1641. DOI: https://doi.org/10.1212/WNL.58.11.1635

Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 1785-1796. DOI: https://doi.org/10.1152/jn.00005.2017

Fenoglio, C., Scarpini, E., Serpente, M., & Galimberti, D. (2018). Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. Journal of Alzheimer’s Disease, 62(3), 913-932. DOI: https://doi.org/10.3233/JAD-170702

Fogassi, L., & Luppino, G. (2005). Motor functions of the parietal lobe. Current Opinion in Neurobiology, 15(6), 626-631. DOI: https://doi.org/10.1016/j.conb.2005.10.015

Fymat, A. L. (2019). On dementia and other cognitive disorders. Clinical Research in Neurology, 2(1), 1-4.

Gaetz, M. (2004). The neurophysiology of brain injury. Clinical Neurophysiology, 115(1), 4-18. DOI: https://doi.org/10.1016/S1388-2457(03)00258-X

Geschwind, M. D. (2016). Rapidly progressive dementia. Continuum: Lifelong Learning in Neurology, 22(2 Dementia), 510-537. DOI: https://doi.org/10.1212/CON.0000000000000319

Geschwind, M. D., Shu, H., Haman, A., Sejvar, J. J., & Miller, B. L. (2008). Rapidly progressive dementia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 64(1), 97-108. DOI: https://doi.org/10.1002/ana.21430

Girotra, P., Behl, T., Sehgal, A., Singh, S., & Bungau, S. (2022). Investigation of the molecular role of brain-derived neurotrophic factor in Alzheimer’s disease. Journal of Molecular Neuroscience, 72(2), 173-186. DOI: https://doi.org/10.1007/s12031-021-01824-8

Głowacka, A., Ji, B., Szczepankiewicz, A. A., Skup, M., & Gajewska-Woźniak, O. (2022). BDNF spinal overexpression after spinal cord injury partially protects soleus neuromuscular junction from disintegration, increasing VAChT and AChE transcripts in soleus but not tibialis anterior motoneurons. Biomedicines, 10(11). Article No.: 2851. DOI: https://doi.org/10.3390/biomedicines10112851

Grand, J. H., Caspar, S., & MacDonald, S. W. (2011). Clinical features and multidisciplinary approaches to dementia care. Journal of Multidisciplinary Healthcare, 4, 125-147. DOI: https://doi.org/10.2147/JMDH.S17773

Gulyaeva, N. V. (2019). Functional neurochemistry of the ventral and dorsal hippocampus: Stress, depression, dementia and remote hippocampal damage. Neurochemical Research, 44, 1306-1322. DOI: https://doi.org/10.1007/s11064-018-2662-0

Hachisu, M., Konishi, K., Hosoi, M., Tani, M., Tomioka, H., Inamoto, A., ... & Hori, K. (2015). Beyond the hypothesis of serum anticholinergic activity in Alzheimer’s disease: acetylcholine neuronal activity modulates brain-derived neurotrophic factor production and inflammation in the brain. Neurodegenerative Diseases, 15(3), 182-187. DOI: https://doi.org/10.1159/000381531

Hardy, C. J., Buckley, A. H., Downey, L. E., Lehmann, M., Zimmerer, V. C., Varley, R. A., ... & Warren, J. D. (2016). The language profile of behavioral variant frontotemporal dementia. Journal of Alzheimer’s Disease, 50(2), 359-371. DOI: https://doi.org/10.3233/JAD-150806

Hodges, J. R., Patterson, K., Ward, R., Garrard, P., Bak, T., Perry, R., & Gregory, C. (1999). The differentiation of semantic dementia and frontal lobe dementia (temporal and frontal variants of frontotemporal dementia) from early Alzheimer’s disease: a comparative neuropsychological study. Neuropsychology, 13(1), 31-40. DOI: https://doi.org/10.1037//0894-4105.13.1.31

Iadecola, C. (2013). The pathobiology of vascular dementia. Neuron, 80(4), 844-866. DOI: https://doi.org/10.1016/j.neuron.2013.10.008

Jacobs, H. I., Van Boxtel, M. P., Uylings, H. B., Gronenschild, E. H., Verhey, F. R., & Jolles, J. (2011). Atrophy of the parietal lobe in preclinical dementia. Brain and Cognition, 75(2), 154-163. DOI: https://doi.org/10.1016/j.bandc.2010.11.003

Josephs, K. A., Ahlskog, J. E., Parisi, J. E., Boeve, B. F., Crum, B. A., Giannini, C., & Petersen, R. C. (2009). Rapidly progressive neurodegenerative dementias. Archives of neurology, 66(2), 201-207. DOI: https://doi.org/10.1001/archneurol.2008.534

Keith, C. M., Haut, M. W., Wilhelmsen, K., Mehta, R. I., Miller, M., Navia, R. O., ... & D’Haese, P. F. (2023). Frontal and temporal lobe correlates of verbal learning and memory in aMCI and suspected Alzheimer’s disease dementia. Aging, Neuropsychology, and Cognition, 30(6), 923-939. DOI: https://doi.org/10.1080/13825585.2022.2144618

Kirshner, H. S., Webb, W. G., Kelly, M. P., & Wells, C. E. (1984). Language disturbance: An initial symptom of cortical degenerations and dementia. Archives of Neurology, 41(5), 491-496. DOI: https://doi.org/10.1001/archneur.1984.04050170037012

Kitamura, T., & Inokuchi, K. (2014). Role of adult neurogenesis in hippocampal-cortical memory consolidation. Molecular brain, 7(1), 1-8. DOI: https://doi.org/10.1186/1756-6606-7-13

Korczyn, A. D., Vakhapova, V., & Grinberg, L. T. (2012). Vascular dementia. Journal of the Neurological Sciences, 322(1-2), 2-10. DOI: https://doi.org/10.1016/j.jns.2012.03.027

Kühn, S., & Gallinat, J. (2014). Segregating cognitive functions within hippocampal formation: A quantitative meta‐analysis on spatial navigation and episodic memory. Human Brain Mapping, 35(4), 1129-1142. DOI: https://doi.org/10.1002/hbm.22239

Kumfor, F., Irish, M., Hodges, J. R., & Piguet, O. (2014). Frontal and temporal lobe contributions to emotional enhancement of memory in behavioral-variant frontotemporal dementia and Alzheimer’s disease. Frontiers in Behavioral Neuroscience, 8. Article ID: 225. DOI: https://doi.org/10.3389/fnbeh.2014.00225

Lee, A. Y. (2011). Vascular dementia. Chonnam Medical Journal, 47(2), 66-71. DOI: https://doi.org/10.4068/cmj.2011.47.2.66

Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A., Bromberg, E., & de Vries, E. F. (2019). Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Molecular Neurobiology, 56, 3295-3312. DOI: https://doi.org/10.1007/s12035-018-1283-6

Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 45-54. DOI: https://doi.org/10.1016/j.pbb.2013.08.007

Marim, C. M., Silva, V., Taminato, M., & Barbosa, D. A. (2013). Effectiveness of educational programs on reducing the burden of caregivers of elderly individuals with dementia: A systematic review. Revista Latino-Americana de Enfermagem, 21, 267-275. DOI: https://doi.org/10.1590/S0104-11692013000700033

Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature, 430(7000), 631–639. DOI: https://doi.org/10.1038/nature02621

Mesulam, M. M. (2013). Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. The Journal of Comparative Neurology, 521(18), 4124–4144. DOI: https://doi.org/10.1002/cne.23415

Mayo, M. C., & Bordelon, Y. (2014). Dementia with Lewy bodies. Seminars in Neurology, 34(2), 182-188. DOI: https://doi.org/10.1055/s-0034-1381741

Metzler-Baddeley, C., Baddeley, R. J., Lovell, P. G., Laffan, A., & Jones, R. W. (2010). Visual impairments in dementia with Lewy bodies and posterior cortical atrophy. Neuropsychology, 24(1), 35-48. DOI: https://doi.org/10.1037/a0016834

Meyer, P., Mecklinger, A., Grunwald, T., Fell, J., Elger, C. E., & Friederici, A. D. (2005). Language processing within the human medial temporal lobe. Hippocampus, 15(4), 451-459. DOI: https://doi.org/10.1002/hipo.20070

Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Frontiers in Cellular Neuroscience, 13. Article No.: 363. DOI: https://doi.org/10.3389/fncel.2019.00363

Mori, E., Shimomura, T., Fujimori, M., Hirono, N., Imamura, T., Hashimoto, M., ... & Hanihara, T. (2000). Visuoperceptual impairment in dementia with Lewy bodies. Archives of Neurology, 57(4), 489-493. DOI: https://doi.org/10.1001/archneur.57.4.489

Morishima‐Kawashima, M., & Ihara, Y. (2002). Alzheimer’s disease: β‐Amyloid protein and tau. Journal of Neuroscience Research, 70(3), 392-401. DOI: https://doi.org/10.1002/jnr.10355

Neary, D., Snowden, J. S., Northen, B., & Goulding, P. (1988). Dementia of frontal lobe type. Journal of Neurology, Neurosurgery & Psychiatry, 51(3), 353-361. DOI: https://doi.org/10.1136/jnnp.51.3.353

Neufang, S., Akhrif, A., Riedl, V., Förstl, H., Kurz, A., Zimmer, C., ... & Wohlschläger, A. M. (2011). Disconnection of frontal and parietal areas contributes to impaired attention in very early Alzheimer’s disease. Journal of Alzheimer’s Disease, 25(2), 309-321. DOI: https://doi.org/10.3233/JAD-2011-102154

Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H., & Ho, R. C. M. (2019). Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): A systematic review and meta-analysis. International Journal of Molecular Sciences, 20(2). Article No.: 257. DOI: https://doi.org/10.3390/ijms20020257

Nguyen, L., Murphy, K., & Andrews, G. (2019). Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training. Ageing Research Reviews, 53. Article ID: 100912. DOI: https://doi.org/10.1016/j.arr.2019.100912

Niewiadomska, G., Mietelska-Porowska, A., & Mazurkiewicz, M. (2011). The cholinergic system, nerve growth factor and the cytoskeleton. Behavioural Brain Research, 221(2), 515-526. DOI: https://doi.org/10.1016/j.bbr.2010.02.024

Nishio, K., Ihara, M., Yamasaki, N., Kalaria, R. N., Maki, T., Fujita, Y., ... & Tomimoto, H. (2010). A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke, 41(6), 1278-1284. DOI: https://doi.org/10.1161/STROKEAHA.110.581686

Novkovic, T., Mittmann, T., & Manahan‐Vaughan, D. (2015). BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus, 25(1), 1-15. DOI: https://doi.org/10.1002/hipo.22342

O’Brien, J. T., & Thomas, A. (2015). Vascular dementia. The Lancet, 386(10004), 1698-1706. DOI: https://doi.org/10.1016/S0140-6736(15)00463-8

Özata Değerli, M. N., & Altuntaş, O. (2023). Are behavioral and psychological symptoms of dementia related to sensory processing? Applied Neuropsychology: Adult, 6, 1-7.

Pal, A., Biswas, A., Pandit, A., Roy, A., Guin, D., Gangopadhyay, G., & Senapati, A. K. (2016). Study of visuospatial skill in patients with dementia. Annals of Indian Academy of Neurology, 19(1), 83-88. DOI: https://doi.org/10.4103/0972-2327.168636

Pang, P. T., & Lu, B. (2004). Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: Role of secreted proteins tPA and BDNF. Ageing Research Reviews, 3(4), 407-430. DOI: https://doi.org/10.1016/j.arr.2004.07.002

Parikh, V., & Bangasser, D. A. (2020). Cholinergic signaling dynamics and cognitive control of attention. Current Topics in Behavioral Neurosciences, 45, 71-87. DOI: https://doi.org/10.1007/7854_2020_133

Peelle, J. E., & Grossman, M. (2008). Language processing in frontotemporal dementia: a brief review. Language and Linguistics Compass, 2(1), 18-35. DOI: https://doi.org/10.1111/j.1749-818X.2007.00047.x

Potkins, D., Myint, P., Bannister, C., Tadros, G., Chithramohan, R., Swann, A., ... & Margallo‐Lana, M. (2003). Language impairment in dementia: Impact on symptoms and care needs in residential homes. International Journal of Geriatric Psychiatry, 18(11), 1002-1006. DOI: https://doi.org/10.1002/gps.1002

Pronier, É., Morici, J. F., & Girardeau, G. (2023). The role of the hippocampus in the consolidation of emotional memories during sleep. Trends in Neurosciences., 46(11), 912-925. DOI: https://doi.org/10.1016/j.tins.2023.08.003

Rajmohan, R., & Reddy, P. H. (2017). Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. Journal of Alzheimer’s Disease, 57(4), 975-999. DOI: https://doi.org/10.3233/JAD-160612

Rao, Y. L., Ganaraja, B., Murlimanju, B. V., Joy, T., Krishnamurthy, A., & Agrawal, A. (2022). Hippocampus and its involvement in Alzheimer’s disease: A review. 3 Biotech, 12(2). Article ID: 55. DOI: https://doi.org/10.1007/s13205-022-03123-4

Renouf, S., Ffytche, D., Pinto, R., Murray, J., & Lawrence, V. (2018). Visual hallucinations in dementia and Parkinson’s disease: a qualitative exploration of patient and caregiver experiences. International Journal of Geriatric Psychiatry, 33(10), 1327-1334. DOI: https://doi.org/10.1002/gps.4929

Ricker, J. H., Keenan, P. A., & Jacobson, M. W. (1994). Visuoperceptual-spatial ability and visual memory in vascular dementia and dementia of the Alzheimer type. Neuropsychologia, 32(10), 1287-1296. DOI: https://doi.org/10.1016/0028-3932(94)90110-4

Sandilyan, M. B., & Dening, T. (2014). Brain function, disease and dementia. Nursing Standard, 29(39), 36-42. DOI: https://doi.org/10.7748/ns.29.39.36.e9425

Sanghvi, H., Singh, R., Morrin, H., & Rajkumar, A. P. (2020). Systematic review of genetic association studies in people with Lewy body dementia. International Journal of Geriatric Psychiatry, 35(5), 436-448. DOI: https://doi.org/10.1002/gps.5260

Sanford, A. M. (2018). Lewy body dementia. Clinics in Geriatric Medicine, 34(4), 603-615. DOI: https://doi.org/10.1016/j.cger.2018.06.007

Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., ... & van der Flier, W. M. (2021). Alzheimer’s disease. The Lancet, 397(10284), 1577-1590. DOI: https://doi.org/10.1016/S0140-6736(20)32205-4

Schindowski, K., Belarbi, K., & Buée, L. (2008). Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes, Brain, and Behavior, 7(Suppl. 1), 43–56. DOI: https://doi.org/10.1111/j.1601-183X.2007.00378.x

Silveri, M. C. (2007). Frontotemporal dementia to Alzheimer’s disease. Dialogues in Clinical Neuroscience, 9(2), 153-160. DOI: https://doi.org/10.31887/DCNS.2007.9.2/msilveri

Sivasathiaseelan, H., Marshall, C. R., Agustus, J. L., Benhamou, E., Bond, R. L., van Leeuwen, J. E., ... & Warren, J. D. (2019). Frontotemporal dementia: A clinical review. Seminars in Neurology, 39(2), 251-263. DOI: https://doi.org/10.1055/s-0039-1683379

Snowden, J. S., Harris, J. M., Thompson, J. C., Kobylecki, C., Jones, M., Richardson, A. M., & Neary, D. (2018). Semantic dementia and the left and right temporal lobes. Cortex, 107, 188-203. DOI: https://doi.org/10.1016/j.cortex.2017.08.024

Snowden, J. S., Neary, D., & Mann, D. M. (2002). Frontotemporal dementia. The British Journal of Psychiatry, 180(2), 140-143. DOI: https://doi.org/10.1192/bjp.180.2.140

Sörensen, S., Duberstein, P., Gill, D., & Pinquart, M. (2006). Dementia care: mental health effects, intervention strategies, and clinical implications. The Lancet Neurology, 5(11), 961-973. DOI: https://doi.org/10.1016/S1474-4422(06)70599-3

Stefaniak, J., & O’Brien, J. (2015). Imaging of neuroinflammation in dementia: A review. Journal of Neurology, Neurosurgery & Psychiatry, 87, 21-28. DOI: https://doi.org/10.1136/jnnp-2015-311336

Teyler, T. J., & DiScenna, P. (1985). The role of hippocampus in memory: a hypothesis. Neuroscience & Biobehavioral Reviews, 9(3), 377-389. DOI: https://doi.org/10.1016/0149-7634(85)90016-8

Thinnes, A., & Padilla, R. (2011). Effect of educational and supportive strategies on the ability of caregivers of people with dementia to maintain participation in that role. The American Journal of Occupational Therapy, 65(5), 541-549. DOI: https://doi.org/10.5014/ajot.2011.002634

Uhlhaas, P. J., Pantel, J., Lanfermann, H., Prvulovic, D., Haenschel, C., Maurer, K., & Linden, D. E. (2008). Visual perceptual organization deficits in Alzheimer’s dementia. Dementia and Geriatric Cognitive Disorders, 25(5), 465-475. DOI: https://doi.org/10.1159/000125671

Ulugut, H., & Pijnenburg, Y. A. (2023). Frontotemporal dementia: Past, present, and future. Alzheimer’s & Dementia, 19(11), 5253-5263. DOI: https://doi.org/10.1002/alz.13363

Vallar, G., & Coslett, H. B. (2018). The parietal lobe. Cambridge, MA: Academic Press.

Van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 1(3), 191-198. DOI: https://doi.org/10.1038/35044558

Voss, S. E., & Bullock, R. A. (2004). Executive function: the core feature of dementia? Dementia and Geriatric Cognitive Disorders, 18(2), 207-216. DOI: https://doi.org/10.1159/000079202

Walker, Z., Possin, K. L., Boeve, B. F., & Aarsland, D. (2015). Lewy body dementias. The Lancet, 386(10004), 1683-1697. DOI: https://doi.org/10.1016/S0140-6736(15)00462-6

Warren, J., Collinge, J., Fox, N., Mead, S., Mummery, C., Rohrer, J., … Weil, R. (2024). Cognitive Impairment and Dementia. In R. Howard, D. M. Kullman, D. Werring, & M. Zandi (Eds.), Neurology: A queen square textbook (3rd edition) (pp. 319-368). Hoboken, NJ: John Wiley & Sons. DOI: https://doi.org/10.1002/9781119715672.ch11

Webster, C. (2021). What is dementia, why make a diagnosis and what are the current roadblocks. World Alzheimer Report. Retrieved from: https://www.alzint.org/resource/world-alzheimer-report-2021/.

Wong, C., & Gallate, J. (2012). The function of the anterior temporal lobe: A review of the empirical evidence. Brain Research, 1449, 94-116. DOI: https://doi.org/10.1016/j.brainres.2012.02.017

Wurzelmann, M., Romeika, J., & Sun. D. (2017). Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regeneration Research, 12(1), 7-12. DOI: https://doi.org/10.4103/1673-5374.198964

World Health Organization (1986). International classification of diseases, clinical modifications-ninth edition-clinical modification, volume 3 (ICD-9-CM-Vol.3). Geneva, Switzerland: The Author.

Xie, G.H., & Wang, Q. (2021). Mandala coloring as a therapeutic tool in treating stress-anxiety-depression (SAD) syndrome. Asian Journal of Interdisciplinary Research, 4(4), 30-36. DOI: https://doi.org/10.54392/ajir2144

Yoon, E. J., Choi, Y., & Park, D. (2022). Improvement of cognitive function in ovariectomized rats by human neural stem cells overexpressing choline acetyltransferase via secretion of NGF and BDNF. International Journal of Molecular Sciences, 23(10). Article No.: 5560. DOI: https://doi.org/10.3390/ijms23105560

Zhang, N. K., Zhang, S. K., Zhang, L. I., Tao, H. W., & Zhang, G. W. (2023). Sensory processing deficits and related cortical pathological changes in Alzheimer’s disease. Frontiers in Aging Neuroscience, 15. Article ID: 1213379. DOI: https://doi.org/10.3389/fnagi.2023.1213379

Zhu, Y., Gao, H., Tong, L., Li, Z., Wang, L., Zhang, C., ... & Yan, B. (2019). Emotion regulation of hippocampus using real-time fMRI neurofeedback in healthy human. Frontiers in Human Neuroscience, 13. Article No.: 242. DOI: https://doi.org/10.3389/fnhum.2019.00242

Zuccato, C., & Cattaneo, E. (2009). Brain-derived neurotrophic factor in neurodegenerative diseases. Nature Reviews Neurology, 5(6), 311-322. DOI: https://doi.org/10.1038/nrneurol.2009.54

Downloads

Published

01-03-2024

How to Cite

XIE, G. H., & TAN, M. K. (2024). Navigating the Labyrinth: Understanding Dementia’s Effect on the Brain and the Role of Educational Therapy-Based Interventions in Dementia Treatment. The Asian Educational Therapist, 2(1), 31–46. https://doi.org/10.64663/aet.30

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.